Add like
Add dislike
Add to saved papers

Derivation and Evaluation of Putative Adverse Outcome Pathways for the Effects of Cyclooxygenase Inhibitors on Reproductive Processes in Female Fish.

Cyclooxygenase (COX) inhibitors are ubiquitous in aquatic systems and have been detected in fish tissues. The exposure of fish to these pharmaceuticals is concerning because COX inhibitors disrupt the synthesis of prostaglandins (PGs), which modulate a variety of essential biological functions, including reproduction. In this study, we investigated the effects of well-characterized mammalian COX inhibitors on female fathead minnow reproductive health. Fish (n = 8) were exposed for 96 h to water containing indomethacin (IN; 100 µg/l), ibuprofen (IB; 200 µg/l) or celecoxib (CX; 20 µg/l), and evaluated for effects on liver metabolome and ovarian gene expression. Metabolomic profiles of IN, IB and CX were not significantly different from control or one another. Exposure to IB and CX resulted in differential expression of comparable numbers of genes (IB = 433, CX = 545). In contrast, 2558 genes were differentially expressed in IN-treated fish. Functional analyses (canonical pathway and gene set enrichment) indicated extensive effects of IN on PG synthesis pathway, oocyte meiosis, and several other processes consistent with physiological roles of PGs. Transcriptomic data were congruent with PG data; IN-reduced plasma PG F2α concentration, whereas IB and CX did not. Five putative AOPs were developed linking the assumed molecular initiating event of COX inhibition, with PG reduction and the adverse outcome of reproductive failure via reduction of: (1) ovulation, (2) reproductive behaviors mediated by exogenous or endogenous PGs, and (3) oocyte maturation in fish. These pathways were developed using, in part, empirical data from the present study and other publicly available data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app