Add like
Add dislike
Add to saved papers

Prediction of cardiac complications for thalassemia major in the widespread cardiac magnetic resonance era: a prospective multicentre study by a multi-parametric approach.

Aims: Cardiovascular magnetic resonance (CMR) has dramatically changed the clinical practice in thalassemia major (TM), lowering cardiac complications. We prospectively reassessed the predictive value of CMR parameters for heart failure (HF) and arrhythmias in TM.

Methods and results: We considered 481 white TM patients (29.48 ± 8.93 years, 263 females) enrolled in the Myocardial Iron Overload in Thalassemia (MIOT) network. Myocardial and liver iron overload were measured by T2* multiecho technique. Atrial dimensions and biventricular function were quantified by cine images. Late gadolinium enhancement images were acquired to detect myocardial fibrosis. Mean follow-up was 57.91 ± 18.23 months. After the first CMR scan 69.6% of the patients changed chelation regimen. We recorded 18 episodes of HF. In the multivariate analysis the independent predictive factors were myocardial fibrosis (HR = 10.94, 95% CI = 3.28-36.43, P < 0.0001), homogeneous MIO (compared with no MIO) (HR = 5.56, 95% CI = 1.37-22.51, P  = 0.016), ventricular dysfunction (HR = 4.33, 95% CI = 1.39-13.43, P  = 0.011). Arrhythmias occurred in 16 patients. Among the CMR parameters only the atrial dilation was identified as univariate prognosticator (HR = 4.26 95% CI=1.54-11.75, P  = 0.005).

Conclusions: CMR guided the change of chelation therapy in nearly 70% of patients, leading to a lower risk of iron-mediated HF and of arrhythmias than previously reported. Homogeneous MIO remained a risk factor for HF but also myocardial fibrosis and ventricular dysfunction identified patients at high risk. Arrhythmias were independent of MIO but increased with atrial dilatation. CMR by a multi-parametric approach dramatically improves cardiac outcomes and provides prognostic information beyond cardiac iron estimation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app