Add like
Add dislike
Add to saved papers

Novel Cell-Inorganic Hybrid Catalytic Interfaces with Enhanced Enzymatic Activity and Stability for Sensitive Biosensing of Paraoxon.

To improve the biosensing performance of organophosphorus hydrolase (OPH), the novel bioinorganic hybrid catalysts were facilely explored by biomineralization and cell surface display technology. During biomineralization, cobalt phosphate crystals were deposited onto the surface of OPH-fused bacteria, and the inorganic crystals at middle of cell collapsed inwardly to form the final spindle morphology because of the lowest energy principle and the mechanics principle. OPH would show the allosteric effect from "inactive" form to "active" form, and the "active" form was "fixed" when OPH was embedded into cobalt phosphate. Therefore, the activity of mineralized OPH-fused cells was greatly enhanced about 3 times in comparison with original OPH-fused cells. Additionally, the stability of the novel hybrid catalysts was also significantly improved. Further, the as-synthesized bioinorganic hybrid catalysts were applied to sensitive paraoxon biosensing, which exhibited lower limit of detection than that of the original counterpart. Thus, this hybrid biocatalytic system would provide a model to develop a wide range of biocatalysts and find a wide range of applications in industrial catalysis, analytical chemistry, and environmental engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app