Add like
Add dislike
Add to saved papers

Theoretical Investigation of the Gas-Phase Reaction of CrO + with Propane.

Transition metal oxide cations (e.g., MO+ ) have been shown to oxidize small alkanes in the gas phase. The chromium oxide cation is of particular interest because it is more reactive than oxides of earlier transition metals but is more selective than oxides of later transition metals. The reaction of CrO+ with propane has been shown to produce a number of products: propanol, propene, ethene, and hydrogen. Few theoretical studies exist for reactions of simple transition metal oxide cations with larger alkanes. We have analyzed the potential energy surfaces associated with the reaction of CrO+ with propane using two DFT methods, B3LYP and M06-L. Energetically viable reaction paths leading to each experimentally observed product have been characterized. Each reaction path begins with formation of a reactive intermediate in which either an α- or β-hydrogen from propane is extracted by the oxygen atom of CrO+ . While pathways leading to formation of hydrogen and ethene were found to occur on a single spin surface, energetically viable pathways to forming propanol and propene require a transition from the quartet spin surface to the sextet surface. The minimum-energy crossing points between the quartet and sextet surfaces were found to be well below the energy level of the reactants and structurally resemble the initial reactive intermediates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app