Add like
Add dislike
Add to saved papers

Conserved versus derived patterns of controlled cell death during the embryonic development of two species of Onychophora (velvet worms).

BACKGROUND: Apoptosis is involved in various developmental processes, including cell migration and tissue and organ formation. Some of these processes are conserved across metazoans, while others are specific to particular taxa. Although the patterns of apoptosis have been investigated in arthropods, no corresponding data are available from one of their closest relatives, the Onychophora (velvet worms).

RESULTS: We analyzed the patterns of apoptosis in embryos of two onychophoran species: the lecithotrophic/matrotrophic viviparous peripatopsid Euperipatoides rowelli, and the placentotrophic viviparous peripatid Principapillatus hitoyensis. Our data show that apoptosis occurs early in development and might be responsible for the degeneration of extra-embryonic tissues. Moreover, apoptosis might be involved in the morphogenesis of the ventral and preventral organs in both species and occurs additionally in the placental stalk of P. hitoyensis.

CONCLUSIONS: Despite the different developmental modes in these onychophoran species, our data suggest that patterns of apoptosis are conserved among onychophorans. While apoptosis in the dorsal extra-embryonic tissue might contribute to dorsal closure-a process also known from arthropods-the involvement of apoptosis in ventral closure might be unique to onychophorans. Apoptosis in the placental stalk of P. hitoyensis is most likely a derived feature of the placentotrophic onychophorans. Developmental Dynamics 246:403-416, 2017. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app