JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Endoscopic ultrasound-guided fine-needle aspirate-derived preclinical pancreatic cancer models reveal panitumumab sensitivity in KRAS wild-type tumors.

Pancreatic cancer (PC) is largely refractory to existing therapies used in unselected patient trials, thus emphasizing the pressing need for new approaches for patient selection in personalized medicine. KRAS mutations occur in 90% of PC patients and confer resistance to epidermal growth factor receptor (EGFR) inhibitors (e.g., panitumumab), suggesting that KRAS wild-type PC patients may benefit from targeted panitumumab therapy. Here, we use tumor tissue procured by endoscopic ultrasound-guided fine-needle aspirate (EUS-FNA) to compare the in vivo sensitivity in patient-derived xenografts (PDXs) of KRAS wild-type and mutant PC tumors to panitumumab, and to profile the molecular signature of these tumors in patients with metastatic or localized disease. Specifically, RNASeq of EUS-FNA-derived tumor RNA from localized (n = 20) and metastatic (n = 20) PC cases revealed a comparable transcriptome profile. Screening the KRAS mutation status of tumor genomic DNA obtained from EUS-FNAs stratified PC patients into either KRAS wild-type or mutant cohorts, and the engraftment of representative KRAS wild-type and mutant EUS-FNA tumor samples into NOD/SCID mice revealed that the growth of KRAS wild-type, but not mutant, PDXs was selectively suppressed with panitumumab. Furthermore, in silico transcriptome interrogation of The Cancer Genome Atlas (TCGA)-derived KRAS wild-type (n = 38) and mutant (n = 132) PC tumors revealed 391 differentially expressed genes. Taken together, our study validates EUS-FNA for the application of a novel translational pipeline comprising KRAS mutation screening and PDXs, applicable to all PC patients, to evaluate personalized anti-EGFR therapy in patients with KRAS wild-type tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app