Add like
Add dislike
Add to saved papers

Development of T m -shift genotyping method for detection of cat-derived Giardia lamblia.

To develop T m -shift genotyping method for detection of cat-derived Giardia lamblia, two sets of primers with two GC-rich tails of unequal length attached to their 5'-end were designed according to two SNPs (BG434 and BG170) of β-giardin (bg) gene, and specific PCR products were identified by inspection of a melting curve on real-time PCR thermocycler. A series of experiments on the stability, sensitivity, and accuracy of T m -shift method was tested, and clinical samples were also detected. The results showed that two sets of primers based on SNP could distinguish accurately between assemblages A and F. Coefficient of variation of T m values of assemblage A and F was 0.14 and 0.07% in BG434 and 0.10 and 0.11% in BG170, respectively. The lowest detection concentration was 4.52 × 10(-5) and 4.88 × 10(-5) ng/μL samples of assemblage A and F standard plasmids. The T m -shift genotyping results of ten DNA samples from the cat-derived G. lamblia were consistent with their known genotypes. The detection rate of clinical samples by T m -shift was higher than that by microscopy, and their genotyping results were in complete accordance with sequencing results. It is concluded that the T m -shift genotyping method is rapid, specific, and sensitive and may provide a new technological mean for molecular detection and epidemiological investigation of the cat-derived G. lamblia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app