Add like
Add dislike
Add to saved papers

Lateral and flexural phonon thermal transport in graphene and stanene bilayers.

Stanene, a low thermal conductivity two-dimensional (2D) sheet composed of group-IV element Sn, is a prototype material with novel properties such as 2D topological insulating behavior and near-room-temperature quantum Hall effects. Monolayer graphene, on the other hand, possesses unusual thermal properties, but has a zero bandgap. By stacking stanene and graphene monolayers vertically into a hetero-bilayer, an indirect bandgap can be obtained, making the hetero-bilayer a good candidate for special applications. In this work, the in-plane thermal conductivity (κ) and out-of-plane interfacial thermal resistance (R) in the hetero-bilayer are systematically investigated using non-equilibrium molecular dynamics and transient pump-probe methods. Effects of dimension, system temperature and van der Waals coupling strength on the thermal properties are examined. The predicted in-plane thermal conductivity of the graphene/stanene hetero-bilayer is 311.1 W m-1 K-1 , higher than most 2D materials such as phosphorene, hexagonal boron nitride (h-BN), MoS2 and MoSe2 . Phonon power spectra are recorded for graphene and stanene individually to help the explanation of their κ difference. The inter-layer thermal resistance between graphene and stanene hetero-bilayers is predicted to be 2.13 × 10-7 K m2 W-1 , which is on the same order of magnitude as several other 2D bilayer structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app