Add like
Add dislike
Add to saved papers

Chemical memory with states coded in light controlled oscillations of interacting Belousov-Zhabotinsky droplets.

The information storing potential of droplets, in which an oscillatory, photosensitive Belousov-Zhabotinsky (BZ) reaction proceeds, is investigated experimentally. We consider coupled oscillations in pairs and triplets of droplets. Droplets are surrounded by a solution of lipids in decane. Oscillations synchronize via diffusion of an activator through a lipid bilayer. The reaction in each droplet can be individually controlled by illumination with blue light through an optical fiber. We found that in pairs of BZ droplets, only the in-phase and the forcing oscillation modes are stable, however switching between these modes is not reliable. In triplets of droplets, switching between two different, stable rotational modes (clockwise and anticlockwise) can be easily implemented. Therefore, such a system is an excellent candidate for a light controlled, reliable, one bit chemical memory unit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app