JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Repair of a Bacterial Small β-Barrel Toxin Pore Depends on Channel Width.

MBio 2017 Februrary 15
Membrane repair emerges as an innate defense protecting target cells against bacterial pore-forming toxins. Here, we report the first paradigm of Ca2+ -dependent repair following attack by a small β-pore-forming toxin, namely, plasmid-encoded phobalysin of Photobacterium damselae subsp. damselae In striking contrast, Vibrio cholerae cytolysin, the closest ortholog of phobalysin, subverted repair. Mutational analysis uncovered a role of channel width in toxicity and repair. Thus, the replacement of serine at phobalysin´s presumed channel narrow point with the bulkier tryptophan, the corresponding residue in Vibrio cholerae cytolysin (W318), modulated Ca2+ influx, lysosomal exocytosis, and membrane repair. And yet, replacing tryptophan (W318) with serine in Vibrio cholerae cytolysin enhanced toxicity. The data reveal divergent strategies evolved by two related small β-pore-forming toxins to manipulate target cells: phobalysin leads to fulminant perturbation of ion concentrations, closely followed by Ca2+ influx-dependent membrane repair. In contrast, V. cholerae cytolysin causes insidious perturbations and escapes control by the cellular wounded membrane repair-like response. IMPORTANCE Previous studies demonstrated that large transmembrane pores, such as those formed by perforin or bacterial toxins of the cholesterol-dependent cytolysin family, trigger rapid, Ca2+ influx-dependent repair mechanisms. In contrast, recovery from attack by the small β-pore-forming Staphylococcus aureus alpha-toxin or aerolysin is slow in comparison and does not depend on extracellular Ca2+ To further elucidate the scope of Ca2+ influx-dependent repair and understand its limitations, we compared the cellular responses to phobalysin and V. cholerae cytolysin, two related small β-pore-forming toxins which create membrane pores of slightly different sizes. The data indicate that the channel width of a small β-pore-forming toxin is a critical determinant of both primary toxicity and susceptibility to Ca2+ -dependent repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app