COMPARATIVE STUDY
JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Validation of Milliflex ® Quantum for Bioburden Testing of Pharmaceutical Products.

This article reports the validation strategy used to demonstrate that the Milliflex® Quantum yielded non-inferior results to the traditional bioburden method. It was validated according to USP <1223>, European Pharmacopoeia 5.1.6, and Parenteral Drug Association Technical Report No. 33 and comprised the validation parameters robustness, ruggedness, repeatability, specificity, limit of detection and quantification, accuracy, precision, linearity, range, and equivalence in routine operation. For the validation, a combination of pharmacopeial ATCC strains as well as a broad selection of in-house isolates were used. In-house isolates were used in stressed state. Results were statistically evaluated regarding the pharmacopeial acceptance criterion of ≥70% recovery compared to the traditional method. Post-hoc test power calculations verified the appropriateness of the used sample size to detect such a difference. Furthermore, equivalence tests verified non-inferiority of the rapid method as compared to the traditional method. In conclusion, the rapid bioburden on basis of the Milliflex® Quantum was successfully validated as alternative method to the traditional bioburden test. LAY ABSTRACT: Pharmaceutical drug products must fulfill specified quality criteria regarding their microbial content in order to ensure patient safety. Drugs that are delivered into the body via injection, infusion, or implantation must be sterile (i.e., devoid of living microorganisms). Bioburden testing measures the levels of microbes present in the bulk solution of a drug before sterilization, and thus it provides important information for manufacturing a safe product. In general, bioburden testing has to be performed using the methods described in the pharmacopoeias (membrane filtration or plate count). These methods are well established and validated regarding their effectiveness; however, the incubation time required to visually identify microbial colonies is long. Thus, alternative methods that detect microbial contamination faster will improve control over the manufacturing process and speed up product release. Before alternative methods may be used, they must undergo a side-by-side comparison with pharmacopeial methods. In this comparison, referred to as validation, it must be shown in a statistically verified manner that the effectiveness of the alternative method is at least equivalent to that of the pharmacopeial methods. Here we describe the successful validation of an alternative bioburden testing method based on fluorescent staining of growing microorganisms applying the Milliflex® Quantum system by MilliporeSigma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app