Add like
Add dislike
Add to saved papers

The Neuropeptide Galanin Is Up-Regulated during Cholestasis and Contributes to Cholangiocyte Proliferation.

During the course of cholestatic liver diseases, mitotically dormant cholangiocytes proliferate and subsequently acquire a neuroendocrine phenotype. Galanin is a neuroendocrine factor responsible for regulation of physiological responses, such as feeding behavior and mood, and has been implicated in the development of fatty liver disease, although its role in biliary hyperplasia is unknown. Biliary hyperplasia was induced in rats via bile duct ligation (BDL) surgery, and galanin was increased in serum and liver homogenates from BDL rats. Treatment of sham and BDL rats with recombinant galanin increased cholangiocyte proliferation and intrahepatic biliary mass, liver damage, and inflammation, whereas blocking galanin expression with specific vivo-morpholino sequences inhibited hyperplastic cholangiocyte proliferation, liver damage, inflammation, and subsequent fibrosis. The proliferative effects of galanin were via activation of galanin receptor 1 expressed specifically on cholangiocytes and were associated with an activation of extracellular signal-regulated kinase 1/2, and ribosomal S6 kinase 1 signal transduction pathways and subsequent increase in cAMP responsive element binding protein DNA-binding activity and induction of Yes-associated protein expression. Strategies to inhibit extracellular signal-regulated kinase 1/2, ribosomal S6 kinase 1, or cAMP responsive element binding protein DNA-binding activity prevented the proliferative effects of galanin. Taken together, these data suggest that targeting galanin signaling may be effective for the maintenance of biliary mass during cholestatic liver diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app