Add like
Add dislike
Add to saved papers

Simulation of fetal heart rate variability with a mathematical model.

In the clinic, the cardiotocogram (CTG), the combined registration of fetal heart rate (FHR) and uterine contractions, is used to predict fetal well-being. Amongst others, fetal heart rate variability (FHRV) is an important indicator of fetal distress. In this study we add FHRV to our previously developed CTG simulation model, in order to improve its use as a research and educational tool. We implemented three sources of variability by applying either 1/f or white noise to the peripheral vascular resistance, baroreceptor output, or efferent vagal signal. Simulated FHR tracings were evaluated by visual inspection and spectral analysis. All power spectra showed a 1/f character, irrespective of noise type and source. The clinically observed peak near 0.1 Hz was only obtained by applying white noise to the different sources of variability. Similar power spectra were found when peripheral vascular resistance or baroreceptor output was used as source of variability. Sympathetic control predominantly influenced the low frequency power, while vagal control influenced both low and high frequency power. In contrast to clinical data, model results did not show an increase of FHRV during FHR decelerations. Still, addition of FHRV improves the applicability of the model as an educational and research tool.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app