Add like
Add dislike
Add to saved papers

Preseason Functional Movement Screen Predicts Risk of Time-Loss Injury in Experienced Male Rugby Union Athletes.

The purpose of this study was to determine the relationship between Functional Movement Screen (FMS) score and the risk of time-loss injury in experienced male rugby union athletes. A secondary purpose was to determine the relationship between FMS-determined asymmetries and the risk of time-loss injury in these athletes. Functional Movement Screen scores were collected from male rugby union athletes (n = 73) during preseason and half-way through one 8-month season. Time-loss injury data were collected throughout the full season. A receiver-operator characteristic curve was created for each half of the season to identify FMS composite and asymmetry cut-off scores associated with increased likelihood of injury and determined odds ratios, sensitivity, and specificity in evaluating FMS as a predictor of injury risk. Odds ratio analyses revealed that when compared with those scoring >14, athletes with an FMS ≤14 were 10.42 times more likely (95% confidence interval [CI]: 1.28-84.75, p = 0.007) to have sustained injury in the first half of the season and 4.97 times (95% CI: 1.02-24.19, p = 0.029) more likely in the second half of the season. The presence of asymmetries was not associated with increased likelihood of injury. Experienced male rugby union athletes with FMS composite scores ≤14 are significantly more likely to sustain time-loss injury in a competitive season than those scoring >14. The quality of fundamental movement, as assessed by the FMS, is predictive of time-loss injury risk in experienced rugby union athletes and should be considered an important preseason assessment tool used by strength and conditioning and medical professionals in this sport with inherently high injury rates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app