Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Behavior of PPI-G2 Dendrimer in a Microemulsion.

Dendrimer nanostructures are of eminent interest in biomedical applications because of their uniform and well-defined molecular size and shape, and their ability to cross cell membranes and reduce the risk of premature clearance from the human body. Dendrimers perform as gene and drug carriers and have also shown significant therapeutic properties for treating cancer and neurodegenerative diseases. A complex drug delivery system, based on a dendrimer solubilized in the aqueous core of a water-in-oil (W/O) microemulsion (ME) along with the drug may combine the advantages of both dendrimers and MEs to provide better control of drug release. We propose a new microemulsion composed of drug-permitted surfactants and dendrimer that can be used as a potential controlled drug delivery nanosystem. The influence of second generation poly(propyleneimine) (PPI-G2) dendrimer; solubilized in (W/O) ME with a capacity of up to 25 wt% PPI-G2 at various pHs; and their interactions with the surfactant phosphatidylcholine (PC), cosurfactant (butanol), and water was studied. SAXS and EPR measurements indicated that increasing PPI-G2 concentration reduces droplet curvature and increases droplet size thus increasing macro-(SAXS) and micro-(EPR) order degree. Furthermore, SD-NMR and ATR-FTIR show stronger interactions between PPI-G2 and water molecules at the expense of PC and butanol headgroups hydration, which increases microviscosity (EPR). PPI-G2's effect is somewhat opposite to the increasing water phase effect, thus reducing the amount of free water (DSC) and slowing the mobility of all ME components (SD-NMR).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app