Add like
Add dislike
Add to saved papers

Influence of Coupling and Embedding Schemes on QM Size Convergence in QM/MM Approaches for the Example of a Proton Transfer in DNA.

The influence of embedding and coupling schemes on the convergence of the QM size in the QM/MM approach is investigated for the transfer of a proton in a DNA base pair. We find that the embedding scheme (mechanical or electrostatic) has a much greater impact on the convergence behavior than the coupling scheme (additive QM/MM or subtractive ONIOM). To achieve size convergence, QM regions with up to 6000 atoms are necessary for pure QM or mechanical embedding. In contrast, electrostatic embedding converges faster: for the example of the transfer of a proton between DNA base pairs, we recommend including at least five base pairs and 5 Å of solvent (including counterions) into the QM region, i.e., a total of 1150 atoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app