Add like
Add dislike
Add to saved papers

Tracking Ultrafast Vibrational Cooling during Excited-State Proton Transfer Reaction with Anti-Stokes and Stokes Femtosecond Stimulated Raman Spectroscopy.

Energy dissipation following photoexcitation is foundational to photophysics and chemistry. Consequently, understanding such processes on molecular time scales holds paramount importance. Femtosecond stimulated Raman spectroscopy (FSRS) has been used to study the molecular structure-function relationships but usually on the Stokes side. Here, we perform both Stokes and anti-Stokes FSRS to track energy dissipation and excited-state proton transfer (ESPT) for the photoacid pyranine in aqueous solution. We reveal biphasic vibrational cooling on fs-ps time scales during ESPT. Characteristic low-frequency motions (<800 cm-1 ) exhibit initial energy dissipation (∼2 ps) that correlates with functional events of forming contact ion pairs via H-bonds between photoacid and water, which lengthens to ∼9 ps in methanol where ESPT is inhibited. The interplay between photoinduced dissipative and reactive channels is implied. Thermal cooling to bulk solvent occurs on the ∼50 ps time scale. These results demonstrate the combined Stokes and anti-Stokes FSRS as a powerful toolset to elucidate structural dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app