Add like
Add dislike
Add to saved papers

Modest Oxygen-Defective Amorphous Manganese-Based Nanoparticle Mullite with Superior Overall Electrocatalytic Performance for Oxygen Reduction Reaction.

Small 2017 Februrary 14
Manganese-based oxides have exhibited high promise as noncoinage alternatives to Pt/C for catalyzing oxygen reduction reaction (ORR) in basic solution and a mix of Mn(3+/4+) valence is believed to be vital in achieving optimum ORR performance. Here, it is proposed that, distinct from the most studied perovskites and spinels, Mn-based mullites with equivalent molar ratio of Mn(3+) and Mn(4+) provide a unique platform to maximize the role of Mn valence in facile ORR kinetics by introducing modest content of oxygen deficiency, which is also beneficial to enhanced catalytic activity. Accordingly, amorphous mullite SmMn2 O5-δ nanoparticles with finely tuned concentration of oxygen vacancies are synthesized via a versatile top-down approach and the modest oxygen-defective sample with an Mn(3+) /Mn(4+) ratio of 1.78, i.e., Mn valence of 3.36 gives rise to a superior overall ORR activity among the highest reported for the family of Mn-based oxides, comparable to that of Pt/C. Altogether, this study opens up great opportunities for mullite-based catalysts to be a cost-effective alternative to Pt/C in diverse electrochemical energy storage and conversion systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app