Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Non-blind acoustic invisibility by dual layers of homogeneous single-negative media.

Scientific Reports 2017 Februrary 15
Non-blind invisibility cloaks allowing the concealed object to sense the outside world have great application potentials such as in high-precision sensing or underwater camouflage. However the existing designs based on coordinate transformation techniques need complicated spatially-varying negative index or intricate multi-layered configurations, substantially increasing the difficulty in practical realization. Here we report on the non-blind acoustic invisibility for a circular object in free space with simple distribution of cloak parameters. The mechanism is that, instead of utilizing the transformation acoustics technique, we develop the analytical formulae for fast prediction of the scattering from the object and then use an evolutionary optimization to retrieve the desired cloak parameters for minimizing the scattered field. In this way, it is proven possible to break through the fundamental limit of complementary condition that must be satisfied by the effective parameters of the components in transformation acoustics-based cloaks. Numerical results show that the resulting cloak produces a non-bflind invisibility as perfect as in previous designs, but only needs two layers with homogenous single-negative parameters. With full simplification in parameter distribution and broken symmetry in complementary relationship, our scheme opens new route to free-space non-blind invisibility, taking a significant step towards real-world application of cloaking devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app