Add like
Add dislike
Add to saved papers

CRISPR/Cas9-mediated genome editing in wild-derived mice: generation of tamed wild-derived strains by mutation of the a (nonagouti) gene.

Scientific Reports 2017 Februrary 15
Wild-derived mice have contributed to experimental mouse genetics by virtue of their genetic diversity, which may help increase the chance of identifying novel modifier genes responsible for specific phenotypes and diseases. However, gene targeting using wild-derived mice has been unsuccessful because of the unavailability of stable embryonic stem cells. Here, we report that CRISPR/Cas9-mediated gene targeting can be applied to the Japanese wild-derived MSM/Ms strain (Mus musculus molossinus). We targeted the nonagouti (a) gene encoding the agouti protein that is localized in hair and the brain. We obtained three homozygous knockout mice as founders, all showing black coat colour. While homozygous knockout offspring were physiologically indistinguishable from wild-type litter-mates, they showed specific domesticated behaviours: hypoactivity in the dark phase and a decline in the avoidance of a human hand. These phenotypes were consistent over subsequent generations. Our findings support the empirical hypothesis that nonagouti is a domestication-linked gene, the loss of which might repress aggressive behaviour.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app