Add like
Add dislike
Add to saved papers

Hydroxyl-Terminated CuInS 2 -Based Quantum Dots: Potential Cathode Interfacial Modifiers for Efficient Inverted Polymer Solar Cells.

The use of interfacial modifiers on cathode or anode layers can effectively reduce the recombination loss and thus have potential to enhance the device performance of polymer solar cells. In this work, we demonstrated that hydroxyl-terminated CuInS2 -based quantum dots could be potential cathode interfacial modifiers on ZnO layer for inverted polymer solar cells. By casting of a thin film of CuInS2 -based quantum dots onto ZnO layer, the controlled devices show obvious enhancements of open-circuit voltage, short-circuit current, and fill factor. With an optimized interfacial layer with ∼7 nm thickness, an improvement of power conversion efficiency up to 16% is obtained and the optimized power conversion efficiency of PTB7-based (PTB7: poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno[3,4-b] thiophenediyl]]) polymer solar cells approaches 8.51%. Detailed analysis shows that the performance enhancement can be explained to the improved light absorption, modified work function, reduced surface roughness, and the increased electron transfer of ZnO cathode interlayer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app