Add like
Add dislike
Add to saved papers

HIF1/2α mediates hypoxia-induced LDHA expression in human pancreatic cancer cells.

Oncotarget 2017 April 12
Glycolysis is a typical conduit for energy metabolism in pancreatic cancer (PC) due to the hypoxic microenviroment. Lactate dehydrogenase A (LDHA) catalyzes the conversion of pyruvate to lactate and is considered to be a key checkpoint of anaerobic glycolysis. The aim of the present study was to explore the mechanism of interactions between hypoxia, HIF-1/2α and LDHA, and the function of LDHA on PC cells by analyzing 244 PC and paratumor specimens. It was found that LDHA was over-expressed and related to tumor stages. The result of in vitro study demonstrated that hypoxia induced LDHA expression. To explore the relationship between HIF and LDHA, chromatin immunoprecipitation assay and luciferase assay were performed. The result showed that HIF-1/2α bound to LDHA at 89bp under the hypoxic condition. Furthermore, knockdown of endogenous HIF-1α and HIF-2α decreased the LDHA expression even in the hypoxic condition, which was accompanied with a significant decrease in lactate production and glucose utilization (p < 0.01). Immunofluorescence in the 244 specimens showed that HIF-1/2α was over-expressed and associated with LDHA over-expression (p < 0.0001). Forced expression of LDHA promoted the growth and migration of PC cells, while knocking down the expression of LDHA inhibited the cell growth and migration markedly. In summary, the present study proved that HIF1/2α could activate LDHA expression in human PC cells, and high expression of LDHA promoted the growth and migration of PC cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app