Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Electrochemical sensors based on magnetic molecularly imprinted polymers: A review.

Participation of magnetic component in molecularly imprinted polymers (MIPs) has facilitated enormously the incorporation of these polymeric materials on electrode surfaces allowing the design of electrochemical sensors with very attractive analytical characteristics in terms of simplicity, reproducibility, low fabrication cost, high sensitivity and selectivity and rapid assay time. The magnetically susceptible resultant MIPs (MMIPs) allowed a simple and fast elution of the template molecules from MMIPs, are easily and faster collected without filtration, centrifugation or other complex operations and are also faster assembled and removed from the electrode surface by simply using an external magnetic field. A wide range of different (nano)materials such as gold nanoparticles (AuNPs), graphene oxide, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) as well as different electrode modifiers (ionic liquids (ILs) and surfactants/dispersants) have been incorporated into the MMIPs to improve the analytical performance of the resulting electrochemical sensors which have demonstrated great promise for determination of relevant analytes in environmental, food and clinical analyses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app