Add like
Add dislike
Add to saved papers

Engineering Neurospora crassa for cellobionate production directly from cellulose without any enzyme addition.

In a cellulosic biorefinery, the cellulase enzymes needed for hydrolysis are one of the major contributors to high processing costs, while the hydrolysis product, cellobiose, has strong inhibition to the cellulases. In this study, we report engineering recombinant Neurospora crassa strains which are able to produce cellobionate, an organic acid, from cellulose without any enzyme addition. Recombinant strains were constructed by heterologously expressing laccase genes from different sources under different promoters in N. crassa F5Δmus-51Δace-1Δcre-1ΔndvB which has six out of seven β-glucosidase (bgl), two transcription factor (cre1 and ace-1), and the cellobionate phosphorylase (ndvB) genes deleted. The strain expressing laccase from Botrytis aclada under a copper metallothionein promoter (HL10) produced the highest laccase activity. N. crassa HL10 produced 47.4mM cellobionate from cellulose without any enzyme addition. The yield of cellobionate from hydrolyzed cellulose was about 94.5%. Conversion of cellobiose to cellobionate improved cellulose conversion and increases product yield.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app