Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Low-Voltage Flow-Through Electroporation in Gold-Microtube Membranes.

Analytical Chemistry 2016 December 21
Electroporation is used to create pores within the membrane of living cells in order to deliver a substance, for example, a gene, into the cytoplasm. To achieve the high electric field gradients required to porate the membrane, current electroporation devices deliver voltage pulses in the kV range to the cell medium. We describe a new device based on gold-microtube membranes that can accomplish electroporation with voltage pulses that are orders of magnitude smaller, ≤5 V. This is possible because the voltage pulses are applied to the gold microtubes resulting in large electric field gradients down the length of the tubes. We used COMSOL simulations to calculate the electric field gradients, and these theoretical results were compared with known experimental values required to electroporate Escherichia coli. We developed two fluorescence-based methods to demonstrate successful electroporation of E. coli. The percentages of electroporated bacteria were found to be more than an order of magnitude higher than obtained with a commercial electroporator, although the voltage employed was 500 times lower. Furthermore, this microtube membrane device is flow through and is therefore capable of continuous, as opposed to batch-wise, electroporation and cell analysis. Cell throughput of >30 million cells per min, higher than any previously reported device, were obtained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app