Add like
Add dislike
Add to saved papers

Probing the Cooperativity of Binding Networks with High-Throughput Thermophoresis.

Analytical Chemistry 2017 January 32
The formation of supramolecular complexes is found in many natural systems and is the basis for cooperative behavior. Here, we report on the development of a high-throughput platform to measure the complex binding behavior in 500 nL volumes and 1 536-well plates. The platform enabled us to elucidate the thermodynamic properties of a heterotrimeric DNA complex that portrays the structure of a biological relevant three-way junction. In a complementing set of cooperative networks, binding constants from ∼0.1 nM to ∼10 μM were measured by sampling a high-dimensional concentration space. Each intermediate binding state was probed simultaneously with only a single fluorescent label. Through systematic base pair variations, we observed the influence of the cooperative effect on single base pair mismatches. We further found coupled binding between seemingly independent binding sites through the complex structure of the three-way junction that could not have been observed without the measurement of the entire network. These results promote automated high-throughput thermophoresis to characterize arbitrary binding networks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app