Add like
Add dislike
Add to saved papers

Design and synthesis of temperature-responsive polymer/silica hybrid nanoparticles and application to thermally controlled cellular uptake.

This study reports the development of temperature-responsive polymer/silica hybrid nanoparticles and their application to temperature-dependent intracellular uptake of hydrophobic encapsulated fluorescence molecules. Amphiphilic diblock copolymer comprising a temperature-responsive segment, poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) [P(NIPAAm-co-DMAAm)] and a trimethyoxysilyl-containing hydrophobic segment was synthesized (PBM-b-ND); this amphiphilic diblock copolymer self-assembled in an aqueous solution, and temperature-responsive polymer/silica hybrid fluorescence nanoparticles were fabricated via a base-catalyzed sol-gel process. The fluorescence probe rhodamine DHPE or boron dipyrromethene derivative was encapsulated into the polymer core with a silica network in a stable manner. Other types of polymer/silica hybrid fluorescence nanoparticles were also developed using either homo-PNIPAAm (PBM-b-N) or homo-PDMAAm (PBM-b-D) segments, instead of P(NIPAAm-co-DMAAm). While PBM-b-D did not exhibit a temperature-dependent phase transition (hydrophilic characteristic), PBM-b-N and PBM-b-ND exhibited temperature-dependent phase transition (hydrophilic/hydrophobic) at 32°C and 38°C, respectively. The cellular uptake of PBM-b-N was clearly observed at both 37°C and 42°C, while the cellular uptake of PBM-b-D was minimal at these temperatures. On the other hand, significant enhancement in the intracellular uptake of PBM-b-ND was observed at 42°C, compared to its uptake at a lower temperature of 37°C. These results indicated that temperature-responsive polymer/silica hybrid nanoparticle, PBM-b-ND demonstrate potential for applications in theranostics with cancer therapy via the combination of local drug delivery and local hyperthermia, as well as for monitoring treatment effectiveness with fluorescence imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app