Add like
Add dislike
Add to saved papers

NaYbF 4 nanoparticles as near infrared light excited inorganic photosensitizers for deep penetration in photodynamic therapy.

Nanoscale 2017 Februrary 24
Photodynamic therapy (PDT) is a non-invasive therapy with many advantages over other therapeutic methods, but it is restricted to treat superficial cancers due to the shallow tissue penetration of visible light. The biological window in the near infrared region (NIR) offers hope to extend the penetration depth, but there is no natural NIR excited photosensitizer. Here, we report a novel photosensitizer: NaYbF4 nanoparticles (NPs). By using a 1,3-diphenylisobenzofuran (DPBF) sensor, we show that the Yb3+ ions can absorb the NIR light and transfer energy directly to oxygen to generate reactive oxygen species (ROS). The efficiency of transferring energy to oxygen by NaYbF4 NPs is comparable to that of traditional photosensitizers. We have carried out PDT both in vitro and in vivo based on NaYbF4 NPs; the results demonstrate that NaYbF4 NPs are indeed an effective NIR photosensitizer, which can help extend the application of PDT to solid tumors owing to the much deeper penetration depth of NIR light.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app