Add like
Add dislike
Add to saved papers

Aluminium and magnesium insertion in sulfur-based spinels: a first-principles study.

We computationally screen several sulfur-based materials with a spinel crystal structure as potential Al and Mg insertion hosts for Al- and Mg-ion batteries. We evaluate the effect of transition-metal substitution (TM = Ti, Cr, Mn, Fe, Co, Ni) on the key properties determining electrode performance. We systematically calculate the thermodynamic stability, average voltage, binding energy, volume expansion, and Al/Mg diffusion for all compounds. The results suggest that the Ni-based spinel shows a relatively high Al and Mg insertion voltage and low diffusion barriers, and thus is a promising candidate cathode material for Al- and Mg-ion batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app