Add like
Add dislike
Add to saved papers

Quantitative prediction of histamine H1 receptor occupancy by the sedative and non-sedative antagonists in the human central nervous system based on systemic exposure and preclinical data.

Significant histamine H1 receptor occupation in the central nervous system (CNS) is associated with sedation. Here we examined the time profiles of the H1 receptor occupancy (RO) in the CNS using sedative (diphenhydramine and ketotifen) and non-sedative (bepotastine and olopatadine) antagonists at their therapeutic doses by integrating in vitro and animal data. A pharmacokinetic model was constructed to associate plasma concentrations and receptor binding in the brain. Dissociation and association rate constants with the H1 receptor and plasma and brain unbound fractions were determined in vitro. Passive and active clearances across the blood-brain barrier (BBB) were estimated based on physicochemical properties and microdialysis studies in mice and monkeys. The estimated RO values were comparable with the reported values determined at time to maximum concentration (Tmax ) of plasma by positron-emission tomography in humans. The simulation suggested that the predicted maximum ROs by bepotastine and olopatadine were greater than the reported values. Sensitivity analysis showed that active transport across BBB had a significant impact on the RO duration of the H1 antagonists examined. The present study demonstrated that modeling and simulation permits a reasonable RO estimation in the human CNS. Our findings will facilitate the development of CNS-acting drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app