Add like
Add dislike
Add to saved papers

Consistent high prevalence of Exophiala dermatitidis, a neurotropic opportunist, on railway sleepers.

Environmental isolation of black yeasts potentially causing human disorders is essential for understanding ecology and routes of infection. Several Exophiala species show prevalence for man-made environments rich in monoaromatic compounds, such as creosote-treated or petroleum-stained railway sleepers. Ambient climatic conditions play a role in species composition in suitable habitats. Therefore, the aim of the present study was to establish the composition of Exophiala species in railway stations as a potential source of human infections in a subtropical region with evaluation of their antifungal susceptibility profiles. We examined 150 railway samples using cotton swabs moistened with sterile physiological saline. Black yeasts and relatives were selected on theirs colony morphology and identified based on ITS rDNA sequencing. Overall, 36 (24%) of samples were positive for black yeast-like fungi, i.e., Exophiala dermatitidis (n=20, 55.6%) was predominant, followed by E. phaeomuriformis (n=9, 25%), E. heteromorpha (n=5, 13.9%), and E. xenobiotica (n=2, 5.6%). Massive contaminations of E. dermatitidis were seen on railway sleepers on creosoted oak wood at the region close to the sea level, while in cold climates were primarily contaminated with clinically insignificant or rare human opportunists (E. crusticola). It seems that, high temperature and humidity are significant effect on species diversity. Moreover, the MIC results for all E. dermatitidis and E. phaeomuriformis strains revealed the widest range and the highest MICs to caspofungin (range 1-16mg/L, Geometric mean 4.912mg/L), and the lowest MIC for posaconazole (0.016-0.031mg/L, G mean 0.061mg/L). However, their clinical effectiveness in the treatment of Exophiala infections remains to be determined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app