JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Disruption of endocytic transport by transthyretin aggregates.

The cytotoxicity of amyloidogenic proteins such as transthyretin (TTR) has implications for neurodegeneration and other pathologies, but is not well understood. In the current study, potential effects of misfolded, aggregated TTRs (agTTR) upon a major cell membrane function-endocytosis-were assessed. Internalization of transferrin (Tf), a ligand whose receptor-mediated endocytosis is well characterized, was analyzed in different cell types after treatment with agTTR. The results indicate disruption of Tf endocytosis: 20-25% inhibition by agTTR relative to the same concentrations of normal soluble TTR, or relative to another control protein, albumin (p<0.05 for agTTR relative to controls). No statistically significant difference was observed for cell surface Tf binding between agTTR-treated and control cells. This is the first evidence for endocytic disruption by agTTR, and presents a novel cytotoxicity mechanism that may account for previously reported inhibitory effects of amyloidogenic TTR on neuronal growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app