Add like
Add dislike
Add to saved papers

Blockade of p38 Mitogen-Activated Protein Kinase Inhibits Murine Sclerodermatous Chronic Graft-versus-Host Disease.

Bone marrow transplantation (BMT) of B10.D2 mice into sublethally irradiated BALB/c mice across minor histocompatibility loci is a well-established animal model for human sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) and systemic sclerosis (SSc). The p38 mitogen-activated protein kinase (MAPK) pathway is a key regulator of inflammation and cytokine production. Furthermore, the activation of p38 MAPK plays an important role in collagen production in SSc. We investigated the effects of p38 MAPK inhibitor, VX-702, on Scl-cGVHD mice. VX-702 was orally administered to Scl-cGVHD mice from day 7 to 35 after BMT. We compared skin fibrosis of Scl-cGVHD mice between the VX-702-treated group and control group. Allogeneic BMT increased the phosphorylation of p38 MAPK in the skin. The administration of VX-702 attenuated the skin fibrosis of Scl-cGVHD compared to the control mice. Immunohistochemical staining showed that VX-702 suppressed the infiltration of CD4+ T cells, CD8+ T cells, and CD11b+ cells into the dermis of Scl-cGVHD mice compared to the control mice. VX-702 attenuated the mRNA expression of extracellular matrix and fibrogenic cytokines, such as IL-6 and IL-13, in the skin of Scl-cGVHD mice. In addition, VX-702 directly inhibited collagen production from fibroblasts in vitro. VX-702 was shown to be a promising candidate for use in treating patients with Scl-cGVHD and SSc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app