JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Water-soluble metalloporphyrinates with excellent photo-induced anticancer activity resulting from high tumor accumulation.

To develop a water-soluble and tumor-targeted photosensitizer for photodynamic therapy (PDT), a porphyrin framework containing the metal ion gallium(III) was combined with platinum(II)-based groups to produce two new pentacationic metalloporphyrinates, Ga-4cisPtTPyP (5,10,15,20-tetrakis{cis-diammine-chloro-platinum(II)}(4-pyridyl)-porphyrinato gallium(III) hydroxide tetranitrate) and Ga-4transPtTPyP (5,10,15,20-tetrakis{trans-diammine-chloro-platinum(II)} (4-pyridyl)-porphyrinato gallium(III) hydroxide tetranitrate). Both complexes exhibited high singlet oxygen quantum yields (Φ∆ ) and remarkable photocytotoxicity with appreciable phototoxic indexes (PIs). In particular, Ga-4cisPtTPyP showed a low IC50 value (Colon 26: 0.12μM; Sarcoma 180: 0.08μM) under illumination and its PI up to 1000. With outstanding tumor accumulation (tumor/muscle ratio>9), Ga-4cisPtTPyP almost completely inhibited tumor growth over two weeks in an in vivo PDT assay. These results imply that Ga-4cisPtTPyP could be a promising anticancer agent for use in PDT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app