Add like
Add dislike
Add to saved papers

Modulation of cerebral RAGE expression following nitric oxide synthase inhibition in rats subjected to focal cerebral ischemia.

The receptor for advanced glycation endproducts (RAGE) is a key mediator of neuroinflammation following cerebral ischemia. Nitric oxide (NO) plays a dualistic role in cerebral ischemia, depending on whether it originates from neuronal, inducible or endothelial synthase. Although a dynamic interplay between RAGE and NO pathways exists, its relevance in ischemic stroke has not been investigated. The aim of this study is to evaluate the effect of the NO synthase (NOS) inhibition on RAGE expression in rats subjected to transient middle cerebral artery occlusion (tMCAo). Full-length (fl-RAGE) gene expression was elevated in the striatum and, to a lesser extent, in the cortex of rats undergone tMCAo. The exacerbation of cortical damage caused by systemic administration of L-N-(1-iminoethyl)ornithine (L-NIO), a relatively selective inhibitor of endothelial NOS (eNOS), was associated with elevated mRNA levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and fl-RAGE in both the cortex and the striatum. Conversely, NG-nitro-l-arginine methyl ester (L-NAME), a non-selective NOS inhibitor, decreased cortical damage, did not affect cerebral cytokine mRNA levels, while it increased fl-RAGE mRNA expression only in the striatum. Fl-RAGE striatal protein levels varied accordingly with observed mRNA changes in the striatum, while in the cortex, RAGE protein levels were reduced by tMCAo and further decreased following L-NIO treatment. Modulation of RAGE expression by different inhibitors of NOS may have opposite effects on transient cortical ischemia: the non selective inhibition of NOS activity is protective, while the selective inhibition of eNOS is harmful, probably via the activation of inflammatory pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app