JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Histamine facilitates GABAergic transmission in the rat entorhinal cortex: Roles of H 1 and H 2 receptors, Na + -permeable cation channels, and inward rectifier K + channels.

Hippocampus 2017 May
In the brain, histamine (HA) serves as a neuromodulator and a neurotransmitter released from the tuberomammillary nucleus (TMN). HA is involved in wakefulness, thermoregulation, energy homeostasis, nociception, and learning and memory. The medial entorhinal cortex (MEC) receives inputs from the TMN and expresses HA receptors (H1 , H2 , and H3 ). We investigated the effects of HA on GABAergic transmission in the MEC and found that HA significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) with an EC50 of 1.3 µM, but failed to significantly alter sIPSC amplitude. HA-induced increases in sIPSC frequency were sensitive to tetrodotoxin (TTX), required extracellular Ca2+ , and persisted when GDP-β-S, a G-protein inactivator, was applied postsynaptically via the recording pipettes, indicating that HA increased GABA release by facilitating the excitability of GABAergic interneurons in the MEC. Recordings from local MEC interneurons revealed that HA significantly increased their excitability as determined by membrane depolarization, generation of an inward current at -65 mV, and augmentation of action potential firing frequency. Both H1 and H2 receptors were involved in HA-induced increases in sIPSCs and interneuron excitability. Immunohistochemical staining showed that both H1 and H2 receptors are expressed on GABAergic interneurons in the MEC. HA-induced depolarization of interneurons involved a mixed ionic mechanism including activation of a Na+ -permeable cation channel and inhibition of a cesium-sensitive inward rectifier K+ channel, although HA also inhibited the delayed rectifier K+ channels. Our results may provide a cellular mechanism, at least partially, to explain the roles of HA in the brain. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app