Add like
Add dislike
Add to saved papers

Visualization of vascular injuries in extremity trauma.

A tandem of particle-based computational methods is adapted to simulate injury and hemorrhage in the human body. In order to ensure anatomical fidelity, a three-dimensional model of a targeted portion of the human body is reconstructed from a dense sequence of CT scans of an anonymized patient. Skin, bone and muscular tissue are distinguished in the imaging data and assigned with their respective material properties. An injury geometry is then generated by simulating the mechanics of a ballistic projectile passing through the anatomical model with the material point method. From the injured vascular segments identified in the resulting geometry, smoothed particle hydrodynamics (SPH) is employed to simulate bleeding, based on inflow boundary conditions obtained from a network model of the systemic arterial tree. Computational blood particles interact with the stationary particles representing impermeable bone and skin and permeable muscular tissue through the Brinkman equations for porous media. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on an injury scenario in the lower leg.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app