Add like
Add dislike
Add to saved papers

Direct evidence from in situ FTIR spectroscopy that o-quinonemethide is a key intermediate during the pyrolysis of guaiacol.

Although o-quinonemethide (6-methylene-2,4-cyclohexadien-1-one) has been proposed as a key intermediate in char formation during the pyrolysis of guaiacol (2-methoxyphenol), direct evidence of this (e.g., spectroscopic data) has not yet been provided. Using in situ FTIR spectroscopy, the pyrolysis of guaiacol was investigated from 30 °C to 630 °C at 40 °C/min. The IR profiles showed direct evidence of o-quinonemethide production at about 350 °C, which vanished rapidly at around 420 °C in the vapor phase, indicating char formation. In addition, at 400 °C, salicyl aldehyde was observed, which decomposed slowly at about 500 °C. In combination with the known products of guaiacol pyrolysis, these results allowed the major reaction pathways of guaiacol pyrolysis to be discerned. Density functional theory calculations were performed, and the results were found to be in good agreement with the experimentally obtained IR profiles. These findings provide guidance on how to suppress secondary reactions of guaiacol during lignin pyrolysis. Graphical abstract On-line analysis of pyrolysis process of guaiacol using in situ FTIR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app