Add like
Add dislike
Add to saved papers

Biodegradation of the benzo[a]pyrene-contaminated sediment of the Jiaozhou Bay wetland using Pseudomonas sp. immobilization.

To remove benzo[a]pyrene (BaP) that has accumulated in the Jiaozhou Bay wetland sediment, two strains (JB1 and JB2) were selected from the BaP-contaminated the wetland sediment and immobilized in coal cinder and chitosan beads using entrapping and surface adsorption methods. Biodegradation of BaP in sediment was carried out in pots. The results showed that, supported by the coal cinder and chitosan beads, 71.9, 65.5, 58.9 and 66.1% of the BaP in the immobilized cells was degraded after 40d. These percentages were clearly higher than the 47.7% that degraded from free cells. Kinetic analysis indicated that the immobilized gel-beads might remove BaP by multiple control steps. Compared to the chitosan, coal cinder-entrapping beads exhibited a higher removal rate for BaP; however, the degradation rates from coal cinder- and chitosan-surface adsorption beads were almost the same. This result indicates that in addition to the BaP-degrading bacteria, carrier materials and immobilizing methods play an important role in determining the success of a biodegradation strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app