Add like
Add dislike
Add to saved papers

Arginine-Modified Nanostructured Lipid Carriers with Charge-Reversal and pH-Sensitive Membranolytic Properties for Anticancer Drug Delivery.

The ability to escape endo/lysosomal trafficking is critically important to prevent entrapment of nanomedicines in lysosomes and to achieve maximum therapeutic efficacy of drugs delivered to cells through endocytosis. In this study, a novel pH-sensitive chitosan carrier with the ability to reverse its charge during endo/lysosomal trafficking is developed as a way of improving lysosomal disruption. N-Arginine-N-octyl chitosan (AOCS) is synthesized by grafting l-arginine onto carboxymethyl chitosan. The AOCS is used to modify the surface of nanostructured lipid carriers (NLC) to prepare pH-sensitive charge-reversal lysosomolytic nanocarriers (ANLC). The ANLC is loaded with 10-hydroxycamptothecin (HCPT). The results show that ANLC is able to reverse surface zeta potential from negative to positive at lysosomal pH, which contributes to improved release of encapsulated drugs into cytoplasm. The lysosomolytic capability of ANLC is confirmed by confocal microscopy and transmission electron microscopy. In vitro studies demonstrate that the anticancer activity of HCPT-loaded ANLC is improved when compared with HCPT-NLC and free HCPT. In vivo pharmacokinetics and tissue distribution analysis show improved delivery of HCPT-ANLC to subcutaneous Heps mouse liver tumors and greatly improved antitumor activity. The results present ANLC as a promising drug delivery carrier for improved antitumor therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app