Add like
Add dislike
Add to saved papers

AvidinOX-anchored biotinylated trastuzumab and pertuzumab induce down-modulation of ErbB2 and tumor cell death at concentrations order of magnitude lower than not-anchored antibodies.

Oncotarget 2017 April 5
The oxidized version of Avidin, known as AvidinOX, was previously shown to link to tissue proteins upon injection or nebulization, thus becoming a stable receptor for biotinylated therapeutics. AvidinOX is currently under clinical investigation to target radioactive biotin to inoperable tumor lesions (ClinicalTrials.gov NCT02053324). Presently, we show that the anti-ErbB2 monoclonal antibodies Trastuzumab and Pertuzumab can be chemically biotinylated while maintaining their biochemical and biological properties. By using several and diverse experimental conditions, we show that when AvidinOX is conjugated to tumor cells, low antibody concentrations of biotinylated Trastuzumab (bTrast) or Pertuzumab (bPert) prevent internalization of ErbB2, induce endoplasmic reticulum stress, cell cycle arrest and apoptosis leading to inhibition of proliferation and ErbB2 signaling. Moreover, we found that the treatment is able to induce down-modulation of ErbB2 thus bypassing the known resistance of this receptor to degradation. Interestingly, we show that AvidinOX anchorage is a way to counteract agonistic activities of Trastuzumab and Pertuzumab. Present data are in agreement with previous observations from our group indicating that the engagement of the Epidermal Growth Factor Receptor (EGFR) by AvidinOX-bound biotinylated Cetuximab or Panitumumab, leads to potent tumor inhibition both in vitro and in animal models. All results taken together encourage further investigation of AvidinOX-based treatments with biotinylated antibodies directed to the members of the EGFR family.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app