Add like
Add dislike
Add to saved papers

An oral quinoline derivative, MPT0B392, causes leukemic cells mitotic arrest and overcomes drug resistant cancer cells.

Oncotarget 2017 April 26
Despite great advances in the treatment of acute leukemia, a renaissance of current chemotherapy needs to be improved. The present study elucidates the underlying mechanism of a new synthetic quinoline derivative, MPT0B392 (B392) against acute leukemia and its potential anticancer effect in drug resistant cells. B392 caused mitotic arrest and ultimately led to apoptosis. It was further demonstrated to be a novel microtubule-depolymerizing agent. The effects of oral administration of B392 showed relative potent anti-leukemia activity in an in vivo xenograft model. Further investigation revealed that B392 triggered induction of the mitotic arrest, followed by mitochondrial membrane potential loss and caspases cleavage by activation of c-Jun N-terminal kinase (JNK). In addition, B392 enhanced the cytotoxicity of sirolimus in sirolimus-resistant acute leukemic cells through inhibition of Akt/mTOR pathway and Mcl-1 protein expression, and also was active in the p-glycoprotein (p-gp)-overexpressing National Cancer Institute/Adriamycin-Resistant cells with little susceptibility to p-gp. Taken together, B392 has potential as an oral mitotic drug and adjunct treatment for drug resistant cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app