Add like
Add dislike
Add to saved papers

Robustness Analysis on Dual Neural Network-based $k$ WTA With Input Noise.

This paper studies the effects of uniform input noise and Gaussian input noise on the dual neural network-based WTA (DNN- WTA) model. We show that the state of the network (under either uniform input noise or Gaussian input noise) converges to one of the equilibrium points. We then derive a formula to check if the network produce correct outputs or not. Furthermore, for the uniformly distributed inputs, two lower bounds (one for each type of input noise) on the probability that the network produces the correct outputs are presented. Besides, when the minimum separation amongst inputs is given, we derive the condition for the network producing the correct outputs. Finally, experimental results are presented to verify our theoretical results. Since random drift in the comparators can be considered as input noise, our results can be applied to the random drift situation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app