Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A Wearable Hip Assist Robot Can Improve Gait Function and Cardiopulmonary Metabolic Efficiency in Elderly Adults.

The aims of this paper were to investigate the effectiveness of a newly developed wearable hip assist robot, that uses an active assist algorithm to improve gait function, muscle effort, and cardiopulmonary metabolic efficiency in elderly adults. Thirty elderly adults (15 males/ 15 females) participated in thispaper. The experimental protocol consisted of overground gait at comfortable speed under three different conditions: free gait without robot assistance, robot-assisted gait with zero torque (RAG-Z), and full RAG. Under all conditions, muscle effort was analyzed using a 12-channel surface electromyography system. Spatio-temporal data were collected at 120 Hz using a 3-D motion capture system with six infrared cameras. Metabolic cost parameters were collected as oxygen consumption per unit (ml/min/kg) and aerobic energy expenditure (Kcal/min). In the RAG condition, participants demonstrated improved gait function, decreased muscle effort, and reduced metabolic cost. Although the hip assist robot only provides assistance at the hip joint, our results demonstrated a clear reduction in knee and ankle muscle activity in addition to decreased hip flexor and extensor activity. Our findings suggest that this robot has the potential to improve stabilization of the trunk during walking in elderly adults.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app