Add like
Add dislike
Add to saved papers

Generative Local Metric Learning for Nearest Neighbor Classification.

We consider the problem of learning a local metric in order to enhance the performance of nearest neighbor classification. Conventional metric learning methods attempt to separate data distributions in a purely discriminative manner; here we show how to take advantage of information from parametric generative models. We focus on the bias in the information-theoretic error arising from finite sampling effects, and find an appropriate local metric that maximally reduces the bias based upon knowledge from generative models. As a byproduct, the asymptotic theoretical analysis in this work relates metric learning to dimensionality reduction from a novel perspective, which was not understood from previous discriminative approaches. Empirical experiments show that this learned local metric enhances the discriminative nearest neighbor performance on various datasets using simple class conditional generative models such as a Gaussian.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app