Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane.

Two compatible organometallic complexes, W(Me)6 (1) and TiNp4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO2-700 ) to synthesize the well-defined bimetallic precatalyst [(≡Si-O-)W(Me)5 (≡Si-O-)Ti(Np)3 ] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in 1 H-1 H multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(≡Si-O-)W(Me)5 ] (3), with a TON of 98, for propane metathesis at 150 °C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by β-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 °C) using a well-defined bimetallic system prepared via the SOMC approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app