Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Controlling Near-Infrared Chromophore Electronic Properties through Metal-Ligand Orbital Alignment.

Transition-metal complexes of radical ligands can exhibit low-energy electronic transitions in the near-infrared (NIR) spectral region. NIR band energy and intensity sensitively depend on the degree of electronic coupling of the chromophore. Using the example of open-shell complexes derived from platinum and a 1,4-terphenyldithiophenol, we present a novel approach toward spectroscopically distinct NIR dyes for which the degree of electronic coupling correlates with the relative orientation of radical ligand and metal orbitals. Ligand/metal orbital alignment is modulated by auxiliary phosphine donors and selectively results in electron localized Class II-III or delocalized Class III structures that display distinct NIR transitions at 6500 and 4000 cm-1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app