Add like
Add dislike
Add to saved papers

Formulation and characterization of nanofibers and films with carvedilol prepared by electrospinning and solution casting method.

The preparation and characterization of films and nanofibers with carvedilol as a poorly water-soluble drug in poly (ethylene oxide) (PEO) polymer were investigated. Films are prepared by solution casting method, and nanofibers by electrospinning from a polymer solution. Water and mixture of ethanol and water were used as solvents. FT-IR analysis of the samples showed that there was no interaction between the polymer and the drug substance. DSC analysis revealed that carvedilol was dissolved in the polymer and influenced the degree of crystallinity of PEO. Carvedilol release rate for all of the formulations was increased in comparison with pure carvedilol. Significant differences in the rate of release of carvedilol from the films and nanofibers were observed. Field Emission Scanning Electron Microscope (FESEM) images of the obtained fiber was revealed the dependence of the fiber diameter of formulation and electrospinning process parameters, and consequently influence the amount and distribution of carvedilol in the encapsulated fibers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app