Add like
Add dislike
Add to saved papers

Organic-Nanowire-SiO 2 Core-Shell Microlasers with Highly Polarized and Narrow Emissions for Biological Imaging.

Development of luminescence probes with polarized and narrow emissions simultaneously is helpful for removing multiply scattered light and enables multiplexing detection, but it remains challenging to use conventional organic dyes, fluorescence proteins, and quantum dots. Here, we demonstrated smart one-dimensional microlaser probes (MLPs) by coating a thin layer of silica shell on the surface of organic nanowires (ONWs) of 1,4-dimethoxy-2,5-di[4'-(methylthio)styryl]benzene (TDSB), namely, ONW@SiO2 core-shell structures. Different from the Fabry-Pérot (FP) cavity formed between two end-faces of semiconductor nanowires, whispering gallery mode (WGM) microresonators are built within the rectangular cross section of ONW@SiO2 MLPs. This enables a lasing threshold as low as 1.54 μJ/cm2 , above which lasing emissions are obtained with a full width at half-maximum (fwhm) < 5 nm and a degree of polarization (DOP) > 83%. Meanwhile, small dimensions of ONW@SiO2 MLPs with a side-length of ca. 500 nm and a length of 3-8 μm help to reduce their perturbations in living cells. With the help of mesoporous silica shells, which provide both high biocompatibility and good photostability, ONW@SiO2 MLPs can be easily introduced into the cell cytoplasm through natural endocytosis. Using their narrow and highly polarized lasing emissions in vitro, we demonstrate that it is possible to tag individual cells using ONW@SiO2 MLPs with high stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app