Add like
Add dislike
Add to saved papers

Untargeted metabolomics analysis of adipogenic transformation in OP9-DL1 cells using liquid chromatography-mass spectrometry: Implications for thymic adipogenesis.

Adipocyte deposition is a key feature of age-related thymic involution, but the underlying mechanisms responsible for thymic adiposity remain to be elucidated. In the present study, we utilized rosiglitazone, a potent peroxisome proliferator-activated receptor γ agonist, to induce adipogenic differentiation of OP9-DL1 cells, and detected the metabolomics alterations during adipogenic differentiation by using liquid chromatography-mass spectrometry. The obtained metabolites were further processed by multivariate statistical analysis, including principal component analysis, partial least squares discriminant analysis, and orthogonal projection on latent-structures discriminant analysis. As a result, we identified a total of 33 significantly differential metabolites between dimethyl sulphoxide- and rosiglitazone-treated OP9-DL1 cells, which were closely related to the dysregulation of phospholipid metabolism pathway, oxidative stress, and associated amino acid metabolism. Meanwhile, two pathways including glycerophospholipid metabolism and nitrogen metabolism were significantly perturbed (P < 0.05). Collectively, our results may provide some heuristic guidance for addressing the underlying mechanism of thymic adipogenesis, and future studies are warranted to unravel the functions of these altered metabolites in thymic adipogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app